Previous video-based human pose estimation methods have shown promising results by leveraging aggregated features of consecutive frames. However, most approaches compromise accuracy to mitigate jitter or do not sufficiently comprehend the temporal aspects of human motion. Furthermore, occlusion increases uncertainty between consecutive frames, which results in unsmooth results. To address these issues, we design an architecture that exploits the keypoint kinematic features with the following components. First, we effectively capture the temporal features by leveraging individual keypoint's velocity and acceleration. Second, the proposed hierarchical transformer encoder aggregates spatio-temporal dependencies and refines the 2D or 3D input pose estimated from existing estimators. Finally, we provide an online cross-supervision between the refined input pose generated from the encoder and the final pose from our decoder to enable joint optimization. We demonstrate comprehensive results and validate the effectiveness of our model in various tasks: 2D pose estimation, 3D pose estimation, body mesh recovery, and sparsely annotated multi-human pose estimation. Our code is available at https://github.com/KyungMinJin/HANet.
translated by 谷歌翻译
尽管视频中多人姿势估计的许多方法都显示出深刻的结果,但它们需要密集的注释数据,这需要过多的人劳动。此外,存在闭塞和运动模糊,这不可避免地导致估计性差。为了解决这些问题,我们提出了一种利用遮挡关节的注意力面罩的方法,并使用变压器在帧之间编码时间依赖。首先,我们的框架组成了稀疏注释的框架的不同组合,表示整体关节运动的轨道。我们从这些组合中提出了一个遮挡注意力面膜,使编码遮挡感知热图作为半监督任务。其次,拟议的时间编码器采用变压器体系结构来有效地从每个时间步骤中汇总了时间关系和关键点,并准确地完善了目标框架的最终姿势估计。我们实现了PoSetrack2017和PoSetrack2018数据集的最新姿势估计结果,并证明了我们在稀疏注释的视频数据中闭塞和运动模糊的鲁棒性。
translated by 谷歌翻译
时间动作本地化(TAL)是识别视频中一组动作的任务,该任务涉及将开始和终点定位并对每个操作实例进行分类。现有方法通过使用预定义的锚窗或启发式自下而上的边界匹配策略来解决此任务,这些策略是推理时间的主要瓶颈。此外,主要的挑战是由于缺乏全球上下文信息而无法捕获远程动作。在本文中,我们介绍了一个无锚的框架,称为HTNET,该框架预测了一组<开始时间,结束时间,类,类>三胞胎,这些视频基于变压器体系结构。在预测粗边界之后,我们通过背景特征采样(BFS)模块和分层变压器对其进行完善,这使我们的模型能够汇总全局上下文信息,并有效利用视频中固有的语义关系。我们演示了我们的方法如何在两个TAL基准数据集上定位准确的动作实例并实现最先进的性能:Thumos14和ActivityNet 1.3。
translated by 谷歌翻译
电脑辅助诊断最近收到了低成本和时间效率优势的关注。虽然深入学习在最近的痤疮检测成功中发挥了重要作用,但仍有几种挑战,例如颜色偏移不一致,尺度的变化和高密度分布。为了解决这些问题,我们提出了一种痤疮检测网络,该网络由三个组成组成,具体而言,特别是:复合特征精制,动态上下文增强和掩模感知多关注。首先,复合特征细化集成了语义信息和精细细节以丰富特征表示,这些特征表示可以减轻不平衡照明的不利影响。然后,动态上下文增强控制用于对上下文增强的多尺度特征的不同接收字段,以处理比例变化。最后,掩模感知多次关注通过抑制无色区域和突出显示可能的痤疮区域来抑制密集地布置和小痤疮。实验在痤疮图像数据集ACNE04和自然图像数据集Pascal VOC上进行了2007年。我们展示了我们的方法如何实现ACNE04和竞争性能,在Pascal VOC上使用先前的方法2007年。
translated by 谷歌翻译
The 3D-aware image synthesis focuses on conserving spatial consistency besides generating high-resolution images with fine details. Recently, Neural Radiance Field (NeRF) has been introduced for synthesizing novel views with low computational cost and superior performance. While several works investigate a generative NeRF and show remarkable achievement, they cannot handle conditional and continuous feature manipulation in the generation procedure. In this work, we introduce a novel model, called Class-Continuous Conditional Generative NeRF ($\text{C}^{3}$G-NeRF), which can synthesize conditionally manipulated photorealistic 3D-consistent images by projecting conditional features to the generator and the discriminator. The proposed $\text{C}^{3}$G-NeRF is evaluated with three image datasets, AFHQ, CelebA, and Cars. As a result, our model shows strong 3D-consistency with fine details and smooth interpolation in conditional feature manipulation. For instance, $\text{C}^{3}$G-NeRF exhibits a Fr\'echet Inception Distance (FID) of 7.64 in 3D-aware face image synthesis with a $\text{128}^{2}$ resolution. Additionally, we provide FIDs of generated 3D-aware images of each class of the datasets as it is possible to synthesize class-conditional images with $\text{C}^{3}$G-NeRF.
translated by 谷歌翻译
Cellular automata (CA) captivate researchers due to teh emergent, complex individualized behavior that simple global rules of interaction enact. Recent advances in the field have combined CA with convolutional neural networks to achieve self-regenerating images. This new branch of CA is called neural cellular automata [1]. The goal of this project is to use the idea of idea of neural cellular automata to grow prediction machines. We place many different convolutional neural networks in a grid. Each conv net cell outputs a prediction of what the next state will be, and minimizes predictive error. Cells received their neighbors' colors and fitnesses as input. Each cell's fitness score described how accurate its predictions were. Cells could also move to explore their environment and some stochasticity was applied to movement.
translated by 谷歌翻译
There is a dramatic shortage of skilled labor for modern vineyards. The Vinum project is developing a mobile robotic solution to autonomously navigate through vineyards for winter grapevine pruning. This necessitates an autonomous navigation stack for the robot pruning a vineyard. The Vinum project is using the quadruped robot HyQReal. This paper introduces an architecture for a quadruped robot to autonomously move through a vineyard by identifying and approaching grapevines for pruning. The higher level control is a state machine switching between searching for destination positions, autonomously navigating towards those locations, and stopping for the robot to complete a task. The destination points are determined by identifying grapevine trunks using instance segmentation from a Mask Region-Based Convolutional Neural Network (Mask-RCNN). These detections are sent through a filter to avoid redundancy and remove noisy detections. The combination of these features is the basis for the proposed architecture.
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
In this paper, we learn a diffusion model to generate 3D data on a scene-scale. Specifically, our model crafts a 3D scene consisting of multiple objects, while recent diffusion research has focused on a single object. To realize our goal, we represent a scene with discrete class labels, i.e., categorical distribution, to assign multiple objects into semantic categories. Thus, we extend discrete diffusion models to learn scene-scale categorical distributions. In addition, we validate that a latent diffusion model can reduce computation costs for training and deploying. To the best of our knowledge, our work is the first to apply discrete and latent diffusion for 3D categorical data on a scene-scale. We further propose to perform semantic scene completion (SSC) by learning a conditional distribution using our diffusion model, where the condition is a partial observation in a sparse point cloud. In experiments, we empirically show that our diffusion models not only generate reasonable scenes, but also perform the scene completion task better than a discriminative model. Our code and models are available at https://github.com/zoomin-lee/scene-scale-diffusion
translated by 谷歌翻译
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
translated by 谷歌翻译